

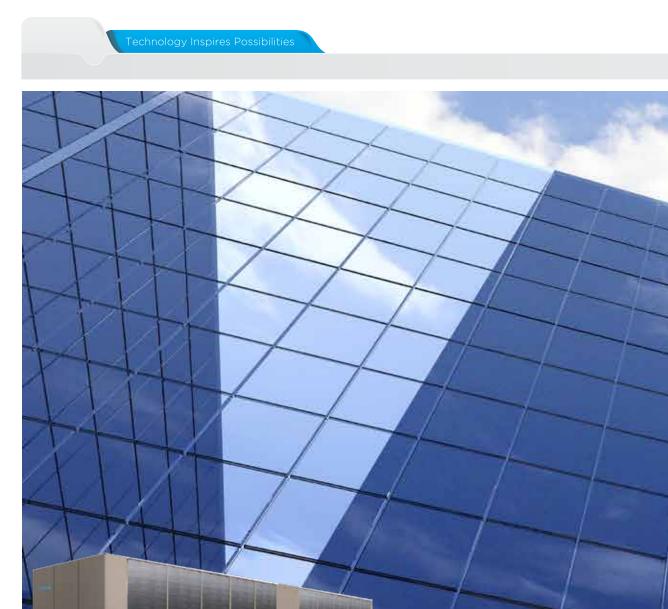
Commercial Air Conditioners 2017/2018

Air cooled screw chiller 50Hz

Midea CAC

Midea CAC is a key division of the Midea Group, a leading producer of consumer appliances and provider of heating, ventilation and air conditioning solutions. Midea CAC has continued with the tradition of innovation upon which it was founded, and emerged as a global leader in the HVAC industry. A strong drive for advancement has created a groundbreaking R&D department that has placed Midea CAC at the forefront of a competitive field. Through these independent efforts and joint cooperation with other global enterprises, Midea has supplied thousands of innovative solutions to customers worldwide.

Midea CAC


There are three production bases: Shunde, Chongqing and Hefei.

MCAC Shunde: 38 product lines focusing on VRF, Split Products, Heat Pump Water Heaters, and AHU/FCU. MCAC Chongqing: 14 product lines focusing on Water Cooled Centrifugal/Screw/Scroll Chillers, Air Cooled Screw/Scroll Chillers, and AHU/FCU.

MCAC Hefei: 11 product lines focusing on VRF, Chillers, and Heat Pump Water Heaters.

MIDEA GROUP FORTUNE GLOBAL FORTUNE 5000

- 2016 >>> Acquire 80% stake in Clivet.
- 2015 >> An international strategic Platform brings Midea Group, Carrier Corporation and Chongqing Mechanical & Electrical come together for the chiller business in the field of commercial air conditioners.
- 2014 >>> Proudly introduced the new series of water cooled screw chillers.
- 2013 >>> Launched the first super efficiency centrifugal chiller with dual stage compressor and full falling-film evaporator.
- 2010 >>> Launched the centrifugal heat pump chiller units.
- 2008 >>> Developed the Smart Star new generation Semi-hermetic centrifugal chiller.
- 2007 >>> Won the first Midea centrifugal chiller project oversea.
- 2006 >> Launched the first Chinese VSD (Variable Speed Drive) centrifugal chiller unit.
- 2004 >> Acquired MGRE entered the chiller industry.
- 2001 >>> The R134a (LC) series centrifugal chiller was named as the national key product.
- 1999 >>> Entered the CAC field.

Introduction

Midea air cooled screw chillers are designed to meet current and future requirements in terms of reliability, energy efficiency and intelligent control. We use the best technologies available today: Twin-rotor screw compressors with a variable capacity valve are ideally matched to coolers and condensers optimally configured for superior heat transfer and unit efficiency. It is ideal for schools, hospitals, shopping malls, office buildings as well as factories and manufacturing plants.

Contents

05 Features and benefits

07 Normal condition (T1)

- Specifications
- Electrical data
- Water pressure drop
- Dimensions
- Options
- ► Installation

20 Typical piping system

21 Tropical condition (T3)

- Specifications
- Electrical data
- ► Water pressure drop
- Dimensions
- Options
- Installation

Features and benefits

Environmental responsibility >>>

- A more efficient chiller means less power consumption, which reduces greenhouse $gas(CO_2)$ emissions. • R134a friendly refrigerant has no ozone-depletion potential.
- + High efficiency, world class, sustainable and reliable performance.

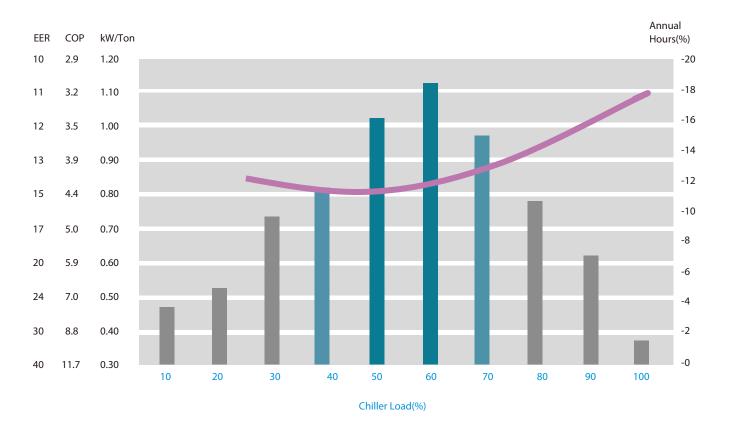
Lowest total cost of ownership >>>

- Reliability, low risk of uncomfortable downtime.
- The best parts, Bitzer Comp. &Danfoss EXV, Shneider electric.

- World-class testing facilities ensure the performance and reliability.
- Each unit was extensively tested to verify its operational reliability and to ensure a smooth startup.
- Serviceability, low maintenance costs.

Silent operation >>>

- Larger dimension impellers reduced speed causing less noise.
- The lower ambient temperature, the lower fan air flow, then reduce noise.
- Intelligent control logic balance the performance and working fan numbers to control the noise and power consumption.
- Super low noise model is optional.



Operating cost savings >>>

Better IPLV:

- Follows AHRI 550/590 calculation which notes that 99% of operating hours are not at full load.
- The COP was optimized for 50% ~ 75% part load conditions.
- * Larger ΔT of cooler reduces HVAC system running cost.

Design flexibility >>>

- Six basic capacity modules, wide array of module combination.
- Standard module for flexible stock and fast delivery.
- Field-coupled to meet large project tonnage requirements.
- Low initial investment and maintenance cost.

Easy and fast installation >>

- Compact size and module design save the transportation, lifting and installation cost.
- * The unit can be placed in service after being connected with power supply and water supply during field installation.

Normal condition (T1)

Normal condition T1

LSBLGW380/C

LSBLGW500/C

LSBLGW600/C LSBLGW720/C

Specifications

					-		
LSBLGWXXX/C		380	500	600	720		
Cooling capacity	kW	376	496	594	720		
Power input	kW	124	159	187	234		
СОР	kW/kW	3.03	3.12	3.17	3.07		
IPLV	kW/kW	3.93	4.02	3.94	3.87		
Semi-hermetic screw compressor							
Circuit A	Quantity	1	1	1	1		
Circuit B	Quantity						
Oil recharge	Туре	BSE170	BSE170	BSE170	BSE170		
Circuit A	L	30	30	30	32		
Circuit B	L						
Refrigerant	Туре	R134a	R134a	R134a	R134a		
Circuit A	kg	76	90	105	140		
Circuit B	kg						
Control Type		EXV	EXV	EXV	EXV		
Evaporator	Туре						
Water content	L	222	308	340	520		
Water flow	m³/h	65.4	86	103.2	123.8		
Pressure drop	kPa	39	54	56	58		
Max. woking pressure(water side)	MPa	1	1	1	1		
Pipe connection type		Victaulic coupling					
Water inlet/outlet pipe dim		DN125	DN125	DN125	DN150		
Condenser	Туре	Fin-coil	Fin-coil	Fin-coil	Fin-coil		
Fan	Quantity	6	8	10	10		
Total air flow	m³/h	23000x6	23000x8	23000x10	23000x10		
Fan speed	rpm	940	940	940	940		
Unit size(LxWxH)	mm	3810x2280x2370	4865x2280x2370	5800x2280x2370	5800x2280x2370		
Shipping weight	kg	3320	4330	5000	5500		
Running weight	kg	3540	4640	5340	6020		

Note:

1) Nominal cooling capacities are based on the following conditions: Chilled water inlet/outlet temp: 12°C/7°C; Outdoor temp (DB/WB):35°C/24°C, Evaporator fouling factor=0.018 m².°C/kW.

2) The applicable ambient temperature range of R134a air-cooled screw units is $15^\circ\text{C} \sim 43^\circ\text{C}.$

LSBLGW900/C

LSBLGW1000/C LSBLGW1200/C

LSBLGW1420/C

LSBLGWXXX/C	900	1000	1200	1420			
Cooling capacity	kW	902	996	1203	1419		
Power input	kW	285	318	381	466		
СОР	kW/kW	3.16	3.13	3.15	3.04		
IPLV	kW/kW	3.94	4.01	4.10	3.80		
Semi-hermetic screw compressor							
Circuit A	Quantity	1	1	1	1		
Circuit B	Quantity	1	1	1	1		
Oil recharge	Туре	BSE170	BSE170	BSE170	BSE170		
Circuit A	L	30	30	30	32		
Circuit B	L	30	30	30	32		
Refrigerant	Туре	R134a	R134a	R134a	R134a		
Circuit A	kg	76	90	105	140		
Circuit B	kg	90	90	105	140		
Control Type		EXV	EXV	EXV	EXV		
Evaporator	Туре		Shell and tube heat exchanger(DX)				
Water content	L	620	600	770	910		
Water flow	m³/h	154.8	172	206.4	244.2		
Pressure drop	kPa	74	75	71	69		
Max. woking pressure(water side)	MPa	1	1	1	1		
Pipe connection type		Victaulic coupling					
Water inlet/outlet pipe dim.		DN150	DN150	DN200	DN200		
Condenser	Туре	Fin-coil	Fin-coil	Fin-coil	Fin-coil		
Fan	Quantity	14	16	16	20		
Total air flow	m³/h	23000x14	23000x16	23000x16	23000x20		
Fan speed	rpm	940	940	940	940		
Unit size(LxWxH)	mm	8800x2280x2370	9640x2280x2370	9640x2280x2370	11700x2280x2370		
Shipping weight	kg	7750	8900	9100	11100		
Running weight	kg	8370	9500	9870	12010		

Note:

1) Nominal cooling capacities are based on the following conditions:
Chilled water inlet/outlet temp: 12°C/7°C; Outdoor temp (DB/WB):35°C/24°C, Evaporator fouling factor=0.018 m².°C/kW.
2) The applicable ambient temperature range of R134a air-cooled screw units is 15°C ~ 43°C.

Electrical data

LSBLGWXXX/C		380	500	600	720		
Standard voltage		380V 3Ph 50Hz					
Voltage range	V	340~420					
Max. running current	A	287	368	412	523		
Max. power consumption	kW	163	209	239	294		
Rated current	A	212	271	319	398		
Compressor A							
Locked rotor Amps.	A	586	805	805	917		
Max. allowed current	A	370	450	450	480		
Rated current	A	183	232	270	349		
Rated power	Rated power kW		139.8	163	210		
Compressor B							
Locked rotor Amps.	A						
Max. allowed current	A						
Rated current	A						
Rated power	kW						
Fan							
Full load Amps.(each)	A	4.9	4.9	4.9	4.9		
Power input(each)	kW	2.4	2.4	2.4	2.4		
Total input	kW	14.4	19.2	24	24		
Crankcase heater				·	·		
Voltage	V	220	220	220	220		
Total input	kW	0.3	0.3	0.3	0.3		
Total Amps.	A	1.36	1.36	1.36	1.36		

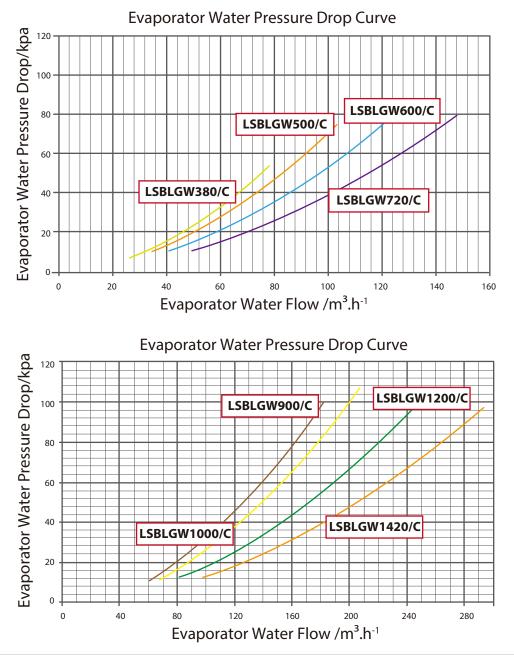
LSBLGWXXX/C		900	1000	1200	1420			
Standard voltage		380V 3Ph 50Hz						
Voltage range	V	340~420						
Max. running current	A	655	736	824	1046			
Max. power consumption	kW	372.2	418	468	588			
Rated current	A	486	542	650	793			
Compressor A				· · ·				
Locked rotor Amps.	A	586	805	805	917			
Max. allowed current	A	370	450	450	447			
Rated current	A	184	232	286	347			
Rated power	kW	110.6	139.8	171.3	209			
Compressor B								
Locked rotor Amps.	A	805	805	805	917			
Max. allowed current	A	450	450	450	447			
Rated current	A	233	232	286	347			
Rated power	kW	140.8	139.8	171.3	209			
Fan				1				
Full load Amps.(each)	A	4.9	4.9	4.9	4.9			
Power input(each)	kW	2.4	2.4	2.4	2.4			
Total input	kW	33.6	38.4	38.4	48			
Crankcase heater								
Voltage	V	220	220	220	220			
Total input	kW	0.6	0.6	0.6	0.6			
Total Amps.	A	2.72	2.72	2.72	2.72			

NOTE:

1. Customer to specify the exact nominal power supply available on site so that electrical components are selected accurately.

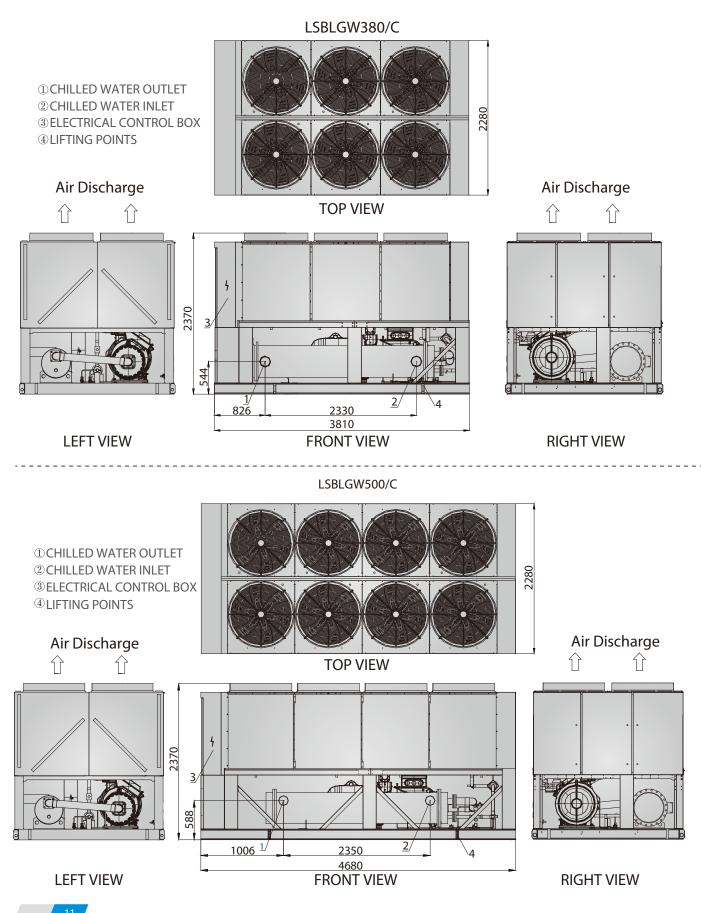
Main power must be supplied from a single field supplied and mounted fused circuit breaker.
 The compressor crankcase heaters must be energized for hours before the unit is initially started or after a prolonged power disconnection.

4. All field wiring must be in accordance with local standards.

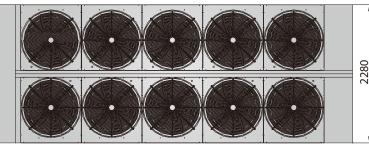

5. Neutral line required on 380V-3Ph-50Hz(5 wires) power supply.

6. Rated load Amps values are on nominal conditions.

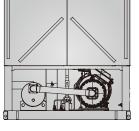
7. The $\pm 10\%$ voltage variation from the nominal is allowed for a short time only,not permanently.


Water pressure drop

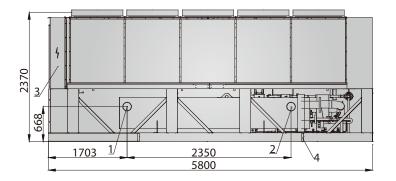
	Min. Flow Rate		Max. Flow Rate		
Unit Model	m³/h	GPM	m³/h	GPM	
LSBLGW380/C	53	233	79	348	
LSBLGW500/C	69	304	104	458	
LSBLGW600/C	83	365	124	546	
LSBLGW720/C	99	436	149	656	
LSBLGW900/C	124	546	186	819	
LSBLGW1000/C	138	608	207	912	
LSBLGW1200/C	165	727	248	1092	
LSBLGW1420/C	196	863	293	1290	

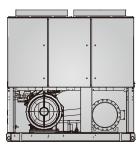

10

Dimensions



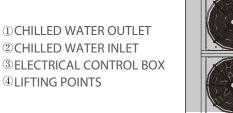
LSBLGW600/C


①CHILLED WATER OUTLET
②CHILLED WATER INLET
③ELECTRICAL CONTROL BOX
④LIFTING POINTS

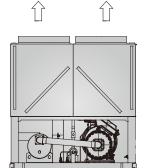

Air Discharge

TOP VIEW

Air Discharge ☆ ☆

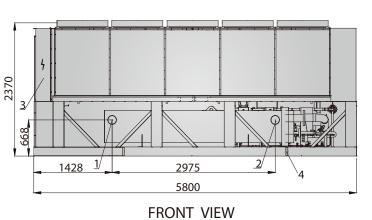

LEFT VIEW

FRONT VIEW

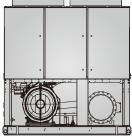

LSBLGW720/C

RIGHT VIEW

2280



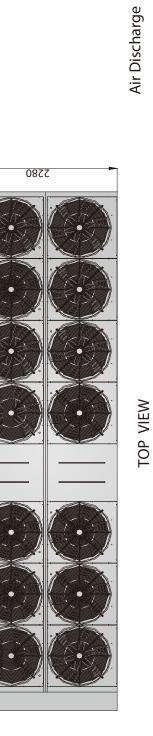
Air Discharge

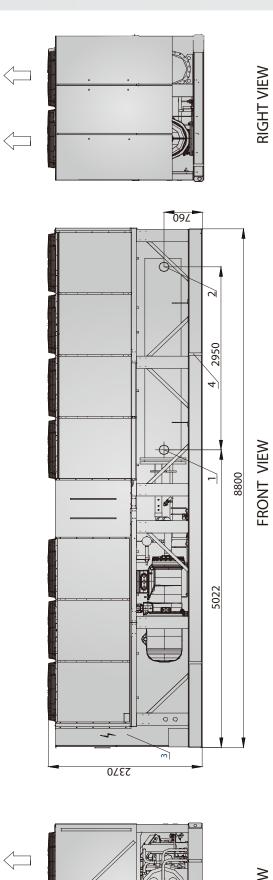


LEFT VIEW

TOP VIEW

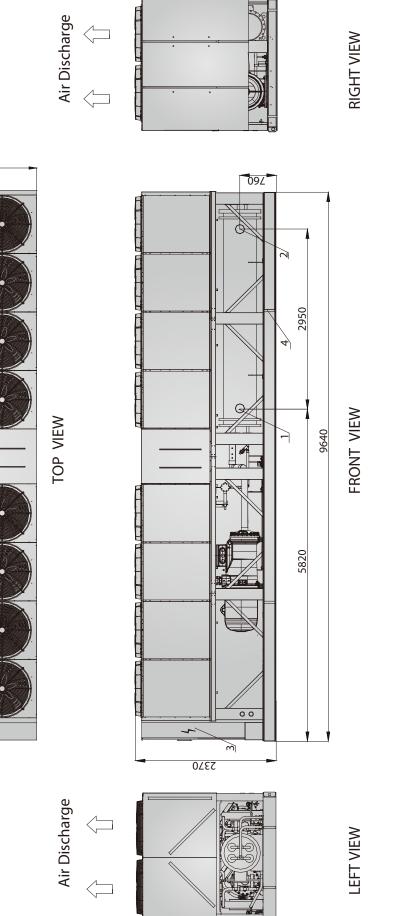
Air Discharge


RIGHT VIEW

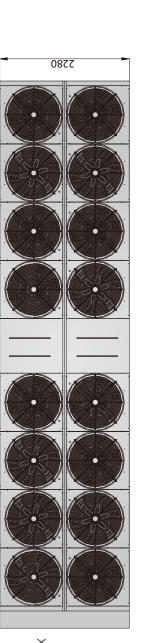

LSBLGW900/C

CHILLED WATER INLET
 CHILLED WATER OUTLET
 ELECTRICAL CONTROL BOX
 LIFTING POINTS

Air Discharge


 $\langle \Box$

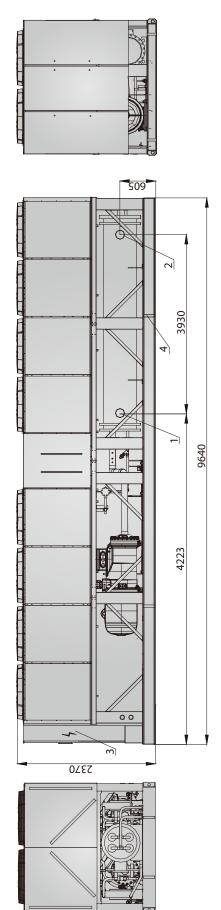
LEFT VIEW


5280

- 2) CHILLED WATER OUTLET
 3) ELECTRICAL CONTROL BOX
 4) LIFTING POINTS

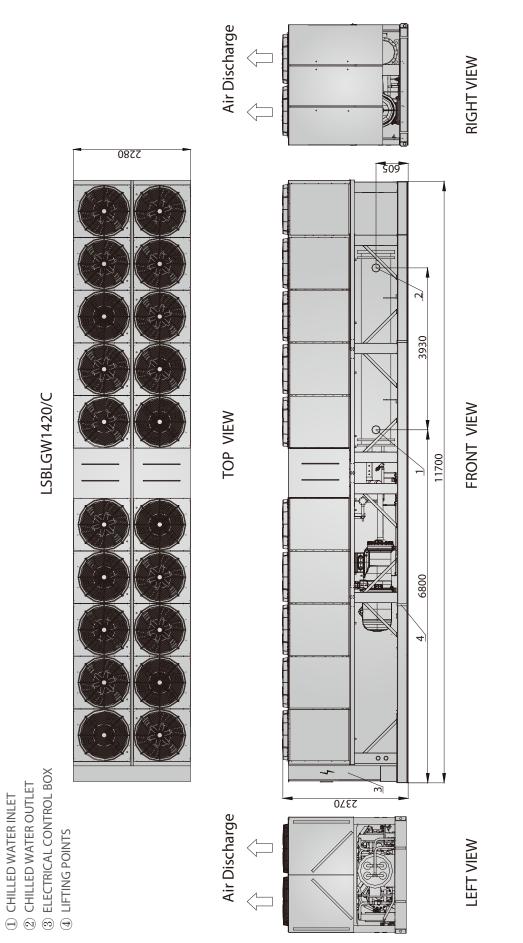
LSBLGW1200/C

CHILLED WATER INLET
 CHILLED WATER OUTLET
 ELECTRICAL CONTROL BOX
 LIFTING POINTS



TOP VIEW

Air Discharge


 $\bigcup \qquad \bigcup$

LEFT VIEW

FRONT VIEW

RIGHT VIEW

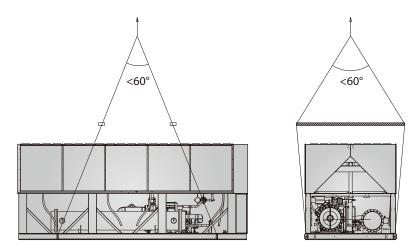
Normal condition T1

Options

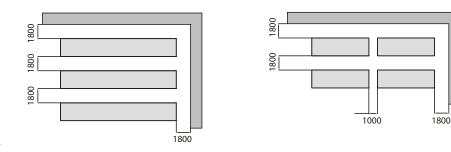
No.	Name	Model	Usage	Picture
1	Water flow switch	WFS-1001-H (Honeywell)	Installed on evaporator outlet pipe to prevent heat exchange pipe from frost crack.	-
2	Spring isolator	MHD Series	To avoid vibration and noise, it must be used between base and foundation when unit is installed.	B
3	Remote control cabinet	YCKZ-P	Can be installed in the control room. Through the cable connected to the unit touch screen, it can display all status information and complete all the operations of unit (startup/shutdown, error confirmation, etc.)	

Installation

Rigging instructions

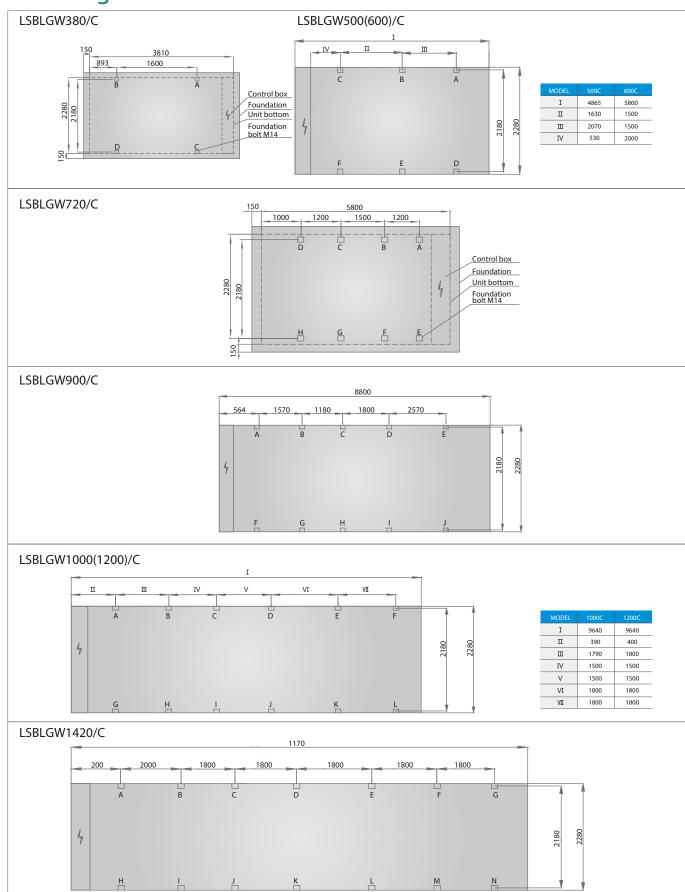

All rigging should be attached through provide holes in base rails, as shown below.

Center of gravity is not the center of the unit. Ensure center of gravity aligns with the main lifting point before lifting.

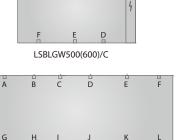

Use spreader bar when rigging, to prevent the slings from damaging the unit.

Caution:

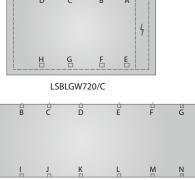
All panels should be in place when rigging. Care must be taken to avoid damage to the coils during handing. Insert packing material between coils & slings if necessary.


Installation clearance

Mounting location



Note: All dimensions are in mm


Load distribution

				1		1		1			1			Unit:KG
Model	А	В	с	D	E	F	G	н	1	J	К	L	М	N
LSBLGW380/C	869	901	869	901	-	-	-	-	-	-	-	-	-	-
LSBLGW500/C	633	855	832	633	855	832	-	-	-	-	-	-	-	-
LSBLGW600/C	815	934	921	815	934	921	-	-	-	-	-	-	-	-
LSBLGW720/C	687	765	800	758	687	765	800	758	-	-	-	-	-	-
LSBLGW900/C	814	944	947	747	733	814	944	947	747	733	-	-	-	-
LSBLGW1000/C	726	912	917	732	731	732	726	912	917	732	731	732	-	-
LSBLGW1200/C	789	912	905	779	777	773	789	912	905	779	777	773	-	-
LSBLGW1420/C	794	925	954	936	800	798	798	794	925	954	936	800	798	798

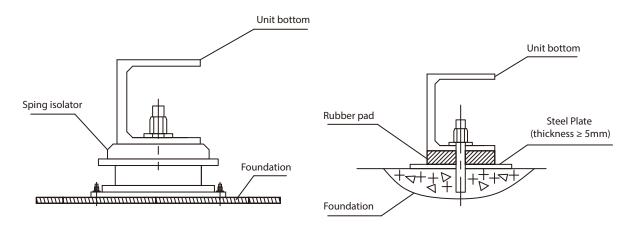
LSBLGW1000(1200)/C

LSBLGW1420/C

Ä

4

LSBLGW900/C


G

Installation requirements:

1. Be sure to take the base preparation and structure into consideration seriously during installation, particularly on rooftop installa tions in order to avoid noise and vibration. Consulting the building designer before conducting installation is recommended.

2. A drainage ditch should surround the base to ensure dewatering occurs.

3. Anti-vibration pad is to be placed between the base frame and foundation in order to avoid vibrations and unnecessary noise, and make sure the unit is horizontal during installation.

Typical piping system

The table below describes the symbols.

Symbol	Symbol Explanation	Symbol	Symbol explanation
Å	Stop Valve	N	Y-Shaped Filter
Ø	Pressure Gauge	AND	Temperature gauge
	Water Flow Switch		Water Pump
-	3-Way Valve		One-way valve
	Flexible joint		Air vent valve